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Outline

• Large deviations of Brownian motion can be described by geometrical optics

• Example 1: winding angle around a disk (presented yesterday by Naftali Smith)

• Example 2: survival of Brownian motion against an invading wall

• Example 3: Airy distribution and additional statistics

• Summary



Today, more than a hundred years since those remarkable discoveries, Brownian motion is a 
central paradigm in physics, chemistry, biology, computer science, finance, etc.

Brownian motion came to prominence in physics in 1905-1908 

A. Einstein P. Langevin J. Perrin



Probability of a Brownian path x(t)
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When this probability is exponentially small, it is often dominated by 
a single Brownian path x(t) – the optimal path, for which the action functional
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is minimal subject to problem-specific constraints

Geometrical optics of Brownian motion = saddle-point evaluation of the path integral (1)

Path-integral formulation for the Wiener process

Formally, 𝐷 → 0. Similar to the limit  ђ → 0 in WKB



A Brownian particle is released at t=0 at x=ε>0. An absorbing wall, initially at x=0, is 
moving to the right according to a power law

Example 2: survival of Brownian motion against invading wall

𝑥𝑤 𝑡 = 𝐶𝑡γ, γ > 0, 𝐶 > 0

What is the probability P(T) that, at long time T, the particle has not yet been absorbed?

BM and N. R. Smith, J. Phys. A: Math. Theor. 52, 415001 (2019)



Early work by mathematicians: A.A. Novikov, Math. USSR Sb. 38, 495 (1981) and 
references there, and by physicists: P.L. Krapivsky and S. Redner (1996,1999)

The survival probability strongly depends on γ

γ <
1

2
: P(T)  goes down as 𝑇−1/2, that is only as a power law. This regime is 

beyond geometrical optics

γ >
1

2
: P(T)  is exponentially small, and it can be described by geometrical optics:
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𝑑𝑡Minimize

under conditions 𝑥 0 = 𝐿, 𝑥 𝑡 > 𝑥𝑤 𝑡 = 𝐶 𝑡γ

One-sided variations 



1/2 < γ < 1 γ > 1
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𝑑𝑡Minimize

under conditions 𝑥 0 = 𝐿, 𝑥 𝑡 > 𝑥𝑤 𝑡 = 𝐶 𝑡γ

One-sided variations

Optimal path: 𝑥 𝑡 = 𝐶 𝑇γ−1𝑡Optimal path: 𝑥 𝑡 = 𝑥𝑤 𝑡 = 𝐶 𝑡γ

forbidden 
region
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𝑑𝑡Evaluate the action

− ln𝑃 𝑇 ≅ 𝑆 =
𝐶2𝑓(γ)𝑇2γ−1

4𝐷

𝑓 γ = ൞

γ2

2γ − 1
, 1/2 < γ ≤ 1

1, γ ≥ 1

𝑇 → ∞Applicability: large action, hence  long-time limit 

Agrees with exact 
result for 𝛾 = 1



The solution is purely geometrical and not limited to power-law walls

− ln𝑃(𝑇) ≅ 𝑆 =
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𝑥𝑤 𝑇 2
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, 𝑥𝑤 𝑡 convex downward

coincides with Novikov (1981), but here it is a one-line calculation

Optimal path: 𝑥 𝑡 =
𝑥
𝑤
𝑇

𝑇
𝑡Optimal path: 𝑥 𝑡 = 𝑥𝑤 𝑡

forbidden 
region

𝑥𝑤 𝑡 convex upward 𝑥𝑤 𝑡 convex downward



A more subtle question: What is the position distribution 𝑃(𝑋, 𝜏, 𝑇) at 
intermediate time 𝜏, given that the particle is not absorbed until time T?

t
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under conditions 𝑥 0 = 𝐿, 𝑥 𝑡 > 𝑥𝑤 𝑡 = 𝐶 𝑡γ and 𝑥 t = 𝑋,

In geometrical optics, this conditional probability is equal to the ratio of the 
probabilities (and the action is equal to the difference of the actions) of two different 

optimal paths that avoid absorption: with and without the constraint 𝑥 t = 𝑋



The regime 

(a) and (b): tangent constructions for one-sided variations

1

2
< 𝛾 < 1 is especially interesting

forbidden 
region

Three distinct regions of X: subcritical, first supercritical and second supercritical

𝜑 is a non-analytic function of X at X=Xc1 and X=Xc2. Such non-analyticities are called dynamical phase 
transitions. Here they are of second and third order, respectively. 

Sharp transitions appear only in the limit 𝑇 → ∞
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Let’s look more closely at the subcritical regime 

What happens when 𝑥 𝜏 = 𝑋 is close to 𝑥𝑤 𝜏 = 𝐶𝜏𝛾?
Asymptote of geometrical-optics result:

1

2
< 𝛾 < 1,

𝑇 → ∞

No dependence on T: the conditional distribution is local in time!

−ln𝑃(𝑋, 𝜏) ≅
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Equation (1) coincides (up to a pre-exponent) with the tail of the  Ferrari-Spohn distribution



A Brownian excursion 𝑥(𝑡), conditioned to stay away 
from a swinging wall 𝑥𝑤 𝑡

The Ferrari-Spohn distribution

P.L. Ferrari and H. Spohn, Ann. Probab. 33, 1302 (2005)

At 𝑇 → ∞, typical fluctuations of Δ𝑋 = 𝑋 − 𝑥𝑤 𝜏
are distributed according to a distribution that depends 

only on the second derivative  ሷ𝑥𝑤 𝜏 .

𝑃FS Δ𝑋, 𝜏 =
𝜎Ai 𝜎 Δ𝑋+𝑎
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Ai(…) is the Airy function,
a1 =-2.33810… is its first root

𝑥𝑤 𝑡

The Ferrari-Spohn (FS) distribution 𝑃FS Δ𝑋, 𝜏 and our large-deviation tail 𝑃 𝑋, 𝜏 have a 
joint validity region. This is a large-Δ𝑋 asymptote of the FS dist., but a small-Δ𝑋 asymptote 

of geometrical optics



The Airy distribution is the distribution of the area

𝐴𝑇 = 0
𝑇
𝑥 𝑡 𝑑𝑡 under a Brownian excursion

Example 3: a tail of the Airy distribution 

T. Agranov, P. Zilber, N.R. Smith, T. Admon, Y. Roichman and  BM, Phys. Rev. Res. (in press), arXiv:1908.08354

Many applications in computer science. More recently, in physics:

Height of fluctuating interfaces S. N. Majumdar and A. Comtet, Phys. Rev. Lett. 92, 225501 (2004); 
J. Stat. Phys. 119, 314 (2005).
Sizes of avalanches in sand pile models M. A. Stapleton and K. Christensen J. Phys. A: Math. Gen. 
39, 9107 (2006).
Sizes of ring polymers S. Medalion, E. Aghion, H. Meirovitch, E. Barkai and D. A. Kessler, Sci. Rep. 6, 
27661 (2016).
Positions of laser-cooled atoms E. Barkai, E. Aghion, and D. A. Kessler, Phys. Rev. X 4, 021036 (2014).

D. A. Darling, Ann. Probab. 11, 803 (1983).
G. Louchard, J. Appl. Probab. 21, 479 (1984).



The Airy distribution 

𝑃 𝐴, 𝑇 =
1
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L. Takács, Adv. Appl. Prob. 23, 557 (1991); J. Appl. Prob. 32, 375 (1995).
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The 𝐴 ≫ 𝐷 𝑇3 tail can be obtained from 
geometrical optics● experimental data
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correctly reproduces the 𝐴 ≫ 𝐷 𝑇3 tail

One-sidedness plays no role



A more subtle question: What is the position distribution 𝑃(𝑋, 𝜏, 𝑇, 𝐴)
of the Brownian excursion at intermediate time 𝜏 conditioned on area 𝐴?
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under conditions 𝑥 0 = 𝑥 𝑇 = 0, 𝑥 0 < 𝑡 < 𝑇 > 0, 0
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Minimize

In geometrical optics, this conditional probability is equal to the ratio of the 
probabilities (and the action is equal to the difference of the actions) of two different 

optimal paths that enclose area 𝐴: with and without the constraint 𝑥 t = 𝑋
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From dimensional analysis
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under conditions 𝑥 0 = 𝑥 𝑇 = 0, 𝑥 0 < 𝑡 < 𝑇 > 0, 0
𝑇
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The optimal path is composed of two parabolic segments

At 𝑋 > 𝑋𝑐 =
3𝐴

𝑇
the one−sidedness kicks in via tangent construction. This leads 

to a dynamical phase transition of third order 

For 𝜏 ≠ 𝑇/2 there are two third-order transitions, see Agranov et al. arXiv:1908.08354.

Sharp transitions appear only in the limit 
𝐴

𝐷 𝑇3
→ ∞; they are smoothed out at finite 
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Example: the other tail of the Airy distribution 

− ln𝑃(𝐴, 𝑇) ≅
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The 𝐴 ≪ 𝐷 𝑇3 tail follows from a different large-deviation formalism

Does geometrical optics describe all large deviations of Brownian motion? 
The answer is no. 

Let ҧ𝑥 =
𝐴𝑇

𝑇
=

1

𝑇
0
𝑇
𝑥 𝑡 𝑑𝑡 𝐶

𝐷𝑇3

𝐴2
= 𝑇𝑓(𝑎), 𝑎 =

𝐴

𝑇
, 𝑓 𝑎 = 𝐶

𝐷

𝑎2
, ҧ𝑥 ≪ 𝐷𝑇

Here there are many untypical paths which lead to small ҧ𝑥

Donsker-Varadhan large deviation principle. 

The constant 𝐶 =
2 𝛼1
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27
can be found  with the tilted generator technique, 

see e.g. H. Touchette, Physica A 504, 5 (2018)



Other recent works on geometrical optics of Brownian motion

1.   BM, Large fluctuations of the area under a constrained Brownian excursion, J. Stat. 
Mech. (2019) 013210.

2. N. R. Smith and BM, Geometrical optics of constrained Brownian excursion: from the 
KPZ scaling to dynamical phase transitions, J. Stat. Mech. (2019) 023205.

3. BM, Mortal Brownian motion: Three short stories, Int. J. Mod. Phys. B 33, 1950172 
(2019).

4.  S. N. Majumdar and BM, Statistics of first-passage Brownian functionals, 
J. Stat. Mech. (in press); arXiv:1911.06668.

Relatives of geometrical optics of Brownian motion: 
optimal fluctuation method, weak-noise theory, macroscopic fluctuation theory, …

These are classical field theories



Summary

• Geometrical optics is a simple and efficient tool for studying Brownian 
motion, “pushed” to a large-deviation regime by constraints. 

• New dynamical phase transitions, of purely geometrical origin.

• The Ferrari-Spohn distribution appears in a whole class of settings where 
conditioned optimal paths of Brownian motion are localized at smooth 
obstacles.

• Future work: applications to stochastic search problems, analogs of 
geometrical optics in non-Markov processes, more extensions to stochastic 
fields, ….
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In this form the result is valid for any wall function which is convex downward:

ሷ𝑥𝑤 𝑡 > 0

A Gaussian distribution with maximum at 
𝑋 = (𝜏/𝑇) 𝑥𝑤 𝑇 , 

that is on the unconditioned path

T



ξ 𝑡 Gaussian white noise

The probability distribution P(x,t) obeys the diffusion equation 

Mathematical definition of Brownian motion x(t) is given in terms of 
Wiener process 

𝑑𝑥

𝑑𝑡
= ξ(𝑡)

D diffusion constant

< ξ 𝑡 > = 0, < ξ 𝑡1 ξ 𝑡2 >= 2D δ(t1− t2 )

𝜕𝑃(𝑥, 𝑡)

𝜕𝑡
= 𝐷

𝜕2𝑃(𝑥, 𝑡)

𝜕𝑥2



Redundancy in biology: a huge copy number of agents (molecules, ions, …) is often needed in situations 
where only one agent does the job. 

A striking example: 3 × 108 sperm cells initially attempt to reach the oocyte 
after copulation in humans, and only one (rarely, a few) make it. 

© KATERYNA KON/SPL  
www.agefotostock.com

Why so a huge redundancy? One possible reason is to reduce the random search time

B. Meerson and S. Redner, Phys. Rev. Lett. 114, 198101 (2015); Z. Schuss, K. Basnayake and D. Holcman, 
Phys. Life Rev. 28, 52 (2019).

The first arrival is unusually fast: a large deviation, a simple optimal path

Short-time large deviations are intrinsic in the problem of N>>1 “searchers”


